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Statement of the problem. &hock waves are considered in an 
ideal gas with inifinite electrical conductivity. Let V1 *, H,,, pL2, pL2 
and Tl 2 be respectively the velocity and magnetic field'vectors, pressure, 
densicy and temperature ahead of (subscript 11 and behind.(subscript 21 a 

shock wave. We will assume that V, and H, are parallel. This assumption 
does not reduce the generality, because the case of arbitrary directions 

of V, and H, can always be reduced to that under consideration by appro- 
priate choice of a moving inertial coordinate system [l]. We will consider 

the flow in the plane containing the coincident vectors V and H, and the 
normal to the surface of the shock wave. 'Ihen the vectors t* and H, are 
also parallel and lie in the same plane, and the entire flow is plane 

(Fig. 1). 

Fig. 1. 

It is shown in the work [2] that magneto-hydrodynamic flows are de- 

termined by two dimensionless parameters: the Mach number M and the number 

N determined by the relation 

where aA is the AlfvCen speed and a the ordinary speed of sound, antl~ is 

the ratio of specific heats. 
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In the notation indicated above and in Fig. 1, the known relations 

[l] for a shock wave may be written in the form 

Ha Q2va VZ N2 sin8 
+ 

COSG 
-=- 
Hl Qlv~' - = ii?isin (D Vl -c+)cos(o-8) cos(a-8) 

Qz VI sin G 
- = Vssin(a-8) ' Ql 

~=~[l-+((z-l)Mq~-l)] (1.1) 

$ = 1 -xMzsinso c: __1 
> 
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In the works [l] and [3] it is shown that in a real shock wave (with 

increasing entropy) 

E> 1, ;> 1, ;<1 
The problem discussed in the present work consists in elucidating the 

nature of changes in flow parameters behind the shock wave as they depend 

upon the parameters M and N ahead of the shock and the angle of inclina- 

tion9of the velocity and field vectors to the wave. In view of the com- 

plexity of the relations (l.l), in the analysis only special character- 

istic points of the shock polar are given, and certain degenerate regimes 

A complete analysis by calculation of the behavior of the functions near 

these characteristic points permits the general nature of the shock polar 

to be shown. 

2. Weak shock waves. In the work [ 21 weak shock waves v,ere studied, 

for which the variation of all flow and field parameters is proportional 

to the angle of deflection of the velocity vector. Such shock waves we 

will call weak shock waves of the first family. 'lhe angle of inclination 

of a shock wave of the first family of zero intensity is determined by 

the. expression [21 

tgu, = t 
1/ 

M2-Nz(l-M*) 
(W-l)(W--W) (2.1) 

As is easily seen from (2.1), these waves exist for N < 1 in the range 

Ma,<MsNandlsM,<m, and for N > 1 in the range M. \< M< 1 and 

N< M,< ml where M = N(l + N*)-I'* (I 

'Ihe angle by which a shock wave of non-zero intensity deviates from 

a0 is proportional to the deflection angle 3 of the stream: 

6=o_oo=(3+x)(1--M2)N2+(X+1)(Na-~2) 8 
4[M2- N2(1- ,W)](l -Ma) (2.2) 

The pressure behind the shock wave is equal to 

P2 = Pl + PV 2 
M2-N2 

o M4 sina~cosoo 
8 (2.3) 
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For M < 1 the deflection of the stream through a positive angle 8 at 
a weak shock wave of the first family can take place only for o0 > 90' 

(in this case cos o0 < fJ and p2 > pl). According to (2.2), under the same 

conditions 6 > 0, consequently, as 3 increases, the shock wave approaches 

the axis. As N+ 0 with M > 1 the wave under consideration approaches the 
weak wave of ordinary gas dynamics. In magneto-gasdynamics a new type of 

weak shock wave appears, which we will call a wave of the second family, 

and which has no analog in ordinary gasdynamics. These waves occur for 

M2=N2+A, a=90°+s and;1=2r+~,whereRandc aresmall, anll 

0 < 7 < 900. In this case', neglecting squares of small quantities in 

(1.1) we have 

VI A Fz A -. = 
iv1 

1+tg5-@$, - = XM2 
Fl 

COS2Tw -EtgT 

Pz -=1+&, 
I 

A? 

PI 
+ x sin2 T - 

MS 

(2.4) 

Hence, it is clear tllat we must have ,A > 0; that is, the second type 

of shock wave exists for Al > N. 

For M = N the stream is turned through any angle up to 180' without 

changes in the flow and fielcl parameters*. This type of wave has a simple 

physical interpretation. Consider a wave of this type (Fig. 2). From the 

geometry of the flow it is clear that the angles 1~~ and p2 between the 

velocity and field vectors and the normal to the wave are equal to eacll 

Fig. 2. Fig. 3. 

other an,! to r; that is, 11~ = 1~~ = TV = T. Since pl,= p2, p = p2, V, = V2 
ancl H, = H,, it is clear that the mass, normal momentum ant \ energy of the 
stream are conservecl. Ilie change in tangential momentum is determined 

such that, in contrast to the ordinary shock wave, in the magneto-hydro- 
dynamic wave a finite force acts on the fluid. In fact, since the current 

across any surface is equal to the integral of the field around the con- 

tour of that surface 

l These waves are called rotatory shocks [ I I. 
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and since the field suffers a lliscontinuity at the shock, a finite current 
flows in the shock. Since this current flows in a magnetic field, a finite 

force acts upon it, having in the general case normal as well as tengential 

components . A shock wave in an infinitely conducting gas is basically dis- 

tinguished from an ordinary shock wave lay the appearance of this force, 

Fig. 4. 

since the existence of a magnetic field and infinite conductivity affect 

neither the conservation of mass nor the conservation of energy*. 

In the case considered the current per unit length of shock is equal 

to l/2 7r-l c H sin CL. This current flows in the magnetic field H cos p 

normal to the shock, so that the force acting along the shock is equal to 

l/2 n -lcH’sinp COSI-(, This force must be equal to the change in tan- 

gential impulse 

2pV2 sin p ~0s p, = 1/z 3ClI-I 2 sin p COS p 

I%is equality clearly applies to M = N, which was assumed. 

We note that the last type of wave occurs also in an imcompressible 

fluid for 4n pIV12 = HI*. In the hodograph plane of the velocity (Figs. 

3 and 4) the polar for the shock wave of the second family with hf = N is 

clearly represented by a circle. 

. The flux of the Poynting vector s = (4nr’ c E x H through a control 

surface enclosing both sides of the shock surface is equal to zero. 
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3. Normal shock wave(a = l/227). If V, and H, are perpendicular 
to the shock front, then one of the possible flows is a flow with a con- 

tinuous field. In this case there is no current in the shock and the 

shock wave is identical with the ordinary one. However, in magneto-gas- 

dynamics a flow is possible with deflection of the velocity and field 

vectors. In this case -the force acting on the current arising at the wave 

turns the stream. 

Putting CT = 1/2n in (1.1) we have 

v2 N2 1 P2 -_ 
-=M2COS8' x= Vl 

1 +x(M2-N2)--/2xN2tg2Q. 

~a Ma tg2 & z?zz tN2 -Mz)[2+(x-l)M2-(~+l)~a] 
r=p N’ 

It is easy to verify that such shock waves of compression (p2/p1 > 1) 

exist only for N > 1 and NS M< M,, where 

Thus in this range three regimes of flow are possible behind a normal 

shock (with8 > 0, B= 0 and 9< 0). 'Ihe point M= M, is also special 
for the behavior of the shock wave near u = l/277 and 3 = 0. In fact, 

with (T = 1/2n- 6 and small we have 

g=2+(x-l)~2-(~+W2~ 
2(M”-1) 

For M > 1 and M< M, the numerator 
as 8 increases u also increases (that 

on the other hand, as 8 increases the 

as it does also along the shock polar 

normal shock. 

on the right is negative. Hence, 

is, u becomes > l/277 ). For M > M,, 
angle of inclination u alecreases, 

of ordinary gasdynamics near the 

4. Shock waves with M = N. It was noted in Section 2 that for 
N = M there exist weak shock waves of a second family at which the stream 
and the field change their direction by any angle without a change in the 

flow parameters. On the other hand, in Section 3 we saw that for M> 1 

and any N the usual normal shock wave exists. 'Ihis wave clearly does not 

belong to the class of weak shock waves of the second family, and con- 

sequently belongs to another branch of the shock polar. It is found that 

for M= N there exists a class of shock waves whose inclination u makes 
a right angle with the direction 8 of the stream behind the shock. Putting 

u = 1/2rr+ 8 in (1.1) we obtain 
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R = [2 -+ xAP(l + sin20)j2 - 4(x + 1)M2 sin2a [2 -j-(x--- 1)M2] 

Here the indices 1 and 2 correspond to the upper and lower signs. 

With ci = 1,&n+ 8,. where 6 is a small quantity and M < 1, we have 

and for M> 1 

Thus, only the second root corresponds to a real shock wave. For 8 + 1 

and M > 1 we have the usual normal shock wave, and for M< 1 a weak wave. 

Consequently for M< 1 and M= N both branches of the shock polar start 
in one point, corresponding to a weak shock wave with 3 = 0. For o=n-6 

va\ [2_i_xM~(I+6~)]~[2+XM~(1+8~)]_~~ 2+(x--1)lW & 

Jq, = (x f 1) hP^o (2 + XW) 

Here again, only the second root corresponds to a real wave: 

2-f-(x-1)hP 

z+xIw s<j 

We note that the magnitude V2 of the velocity behind the iHave tends to 

zero as u -(, ~7, and 8 tends to l/2=. 

The form of the branch for strong shock waves when M= N is shown in 

Figs. 3 and 4. We note that with increasing angle of inclination of the 

wave (going from u = 1/2zto u = n) the wave becomes'continually weaker; 

that is, pl/pl falls from the value p2/p1 = (K + 1)-l[2~ M*- (K - l)] 

corresponding to the ordinary normal shock to the value p,/pI = l/2(2 + 

KM* 1. However, the entropy loss increases (that is, the ratlo p*/~*~/ 

pl/pIK falls). 

5. Shock wtlves with o- + II. It is evident that as u + rr two 
possibilities arise*: 9 + 0 and 3+ n. Let o = of - 6 and 9 0. Then 

VZ --- zz - - 

VI ;: &B.t1* ~=1-+q(b.B)2 -11 
Pz Vl 8 -= -- 
Pl Vz S+B’ (5.2) 

l The case M- N is excluded, when + 1/2a aso-r 77. 
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For u = n - 6 

vz _ 
Vl 

and 8 = - 0 we have 

N2if. 0 
---1, P2 
Ma O-6 jG 

Pa Vl 8 
-zzz 

Pl ~lTq--,8 
6= +(B+I/B2-4AC)A-If3 

It is easy to see that among the shock waves determined by the rela- 

c = (I -1. ‘/,xW) (AZ - N2) 

tions (5.1) only those will be real for which 8 and 6 are positive. ‘lhere- 

fore, these waves can exist for Ma ( M < N. Here only the root corres- 
ponding to the upper sign is meaningful. Analogously, waves turning the 

stream through almost 180°, determined by the relations (5.2), can exist 

only for N< M< MO, where MO is the Mach number for which R2 - 4A B 
vanishes. For M > MO the square root in (5.1) and (5.2) becomes imagin- 

ary. Values of MC for different N are given in Fig. 5, where the values 

Ma, M = N and MM, are also’ given. We note that MC is less than M, almost 

everywhere. ‘Ihus, for N < M < MC these exist two waves turning the stream 
through an angle near to or. 

0 O.8 1.6 

Fig. 5. 

6. General nature of the shock polar. The analysis given above 
permits us to elucidate the general nature of the behavior of the shock 

polar for different values of the parameters M and N of the stream and 
the field. It is convenient to consider separately the cases N< 1 and 

N> 1. 

The case N < 1 (Fig. 3). Here there is no shock wave for M < Ma. For 
Ma < M < N there is one branch of the shock polar, to which correspond 
shock waves with an angle of inclination u > oO >, 1/2n. The pressure be- 
hind the wave and the loss due to entropy rise increase in moving along 
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the polar from o = o0 to u = n. For u = u0 the weak shock of the first 

family exists. For M= Ma all the polars tend to a point. As M increases, 
the point corresponding to u = n moves toward the origin of coordinates, 

which it reaches when M = N. For this value of M the weak shock waves of 

the second family appear (Section 2), whose polar is represented by a 

circle. Both branches of the polar start at the point Vi = V2 a= 0 and 

u = u0 = 1/2n. With further increase in Mach nunber, the points of both 
branches corresponding to u = n and 9 = n begin to approach each other, 

coinciding at M = M . As was observed in Section 2, for 1 > M > N there 

is no weak shock with 9 r 0. ‘Ihe juncture point of the two branches of 
the shock polar detaches itself from the axis and with increase in Mach 

number tends toward continually larger angles . For M- MC all the 

polars tend to a point. For MC < M < 1 no shock wave exists. For M > 1 
there exists one branch of shock waves qualitatively similar to the shock 

polar of ordinary gasdynamics. 

The case N > 1 (Fig. 4). Ilere, just as in the preceding case, there is 

no shock wave for M < M . For Ma < M < 1 there is a branch of the polar 

corresponding to waves 4th an angle of inclination R > u > u0 > 1/2n . 
For M = 1 the angle of inclination of the weak wave of the first family 

u0 becomes equal to l/2 5. Jlere, properly speaking, the weak shock wave is 

at the same time also a normal shock. For M > 1 the shock polars begin 
with a normal shock (B= 0; that is, with the normal shock of ordinary 

gas dynamics) and end with u = n (a= 0). Here the pressure behind the 

shock increases with displacement along the polar from u = 1/2n toward 
u = 77. In Section 4 we saw that for M = N, on the other hand, the pressure 
behind the wave decreases with movement along the polar from u = 1/2n to 

u = n. It can be shown that for a certain number M = Md, where 1 < M, < N, 
the pressure behind the shock along the entire polar is constant and equal 
to the pressure in the usual normal shock. For smaller hlach nunbers the 
pressure behind the shock increases along the polar (as u increases from 
1/2?7 to n), and for larger ones it decreases. For M = N the weak shock 

waves of the second family appear, whose polar is represent-1 by a circle. 
&ginning with M = N and up to M = Aft ( see Section 51, the branches ef 
the shock polar nowhere intersect. 

to u = n, 43 = n join together. 
For M = MC their points corresponding 

For still greater Mach nunt)ers the junc- 
ture point of the shock polars moves toward smaller angles 8 (the maximum 
angle through which the shock wave turns the stream decreases). The polar 

gradually deforms, tending for M > Mb to one similar to the polar of 
ordinary gasdynamics. 

We note that for N < M < MC the pressure and entropy loss behind the 
shock increase along the branch beginning with the weak shock wave 

(~7 = u0 ). Along the second branch, moving from the normal shock toward 
the wave with u = n, the pressure falls but the entropy loss increases. 
Therefore after the joining of tile two branches into one polar (for 
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M> MC) the pressure behind the shock continually increases (in moving 

from (I = oO to the maximum angle of deflection of the velocity vector and 
then to the normal shock), but the entropy loss has a maximum at the 

point of juncture of the polar. 

Similar to the velocity polars, the magnetic field polars can be con- 

structed. lhe characteristic property of these polars is that the angle 

formed by the x-axis (along which the vector H, is directed) and the line 

passing through the extremities of the vectors HI and H, is equal to the 
angle of inclination u of the wave. 

Thus an analysis of the behavior of the shock polar of magneto-hytlro- 

dynamic shock waves has shown a number of interesting properties, which 

have no analog in ordinary gas dynamics. The existence of these properties 

opens new possibilities for practical applications. 
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