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In this work the nature of the shock polar is investigated for various
parameters of the stream and of the magnetic field,

1. Statement of the problem. Shock waves are considered in an
ideal gas with inifinite electrical conductivity. let ¥ HLZ’ Piy P o2
and T , be respectively the velocity and magnetic f1eld vectors pressure,
den51ty and temperature ahead of (subscript 1) and behind (subscrlpt 2) a
shock wave. We will assume that V, and H, are parallel. This assumption
does not reduce the generality, because the case of arbitrary directions
of V and H can always be reduced to that under consideration by appro-
prlate ch01ce of a moving inertial coordinate system [1]. We will consider
the flow in the plane containing the coincident vectors V. and H and the
normal to the surface of the shock wave. Then the vectorslV and H
also parallel and lie in the same plane, and the entire flow is plane
(Fig. 1).

It is shown in the work [ 2] that magneto-hydrodynamic flows are de-
termined by two dimensionless parameters: the Mach number M and the number
N determined by the relation

H /8= _ H?[4mp _ @A’

N2 = = = —
Yexp ®p/lp a?

where a, is the Alfvéen speed and a the ordinary speed of sound, and x 1s
the ratio of specific heats.
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In the notation indicated above and in Fig. 1, the known relations
[1] for a shock wave may be written in the form

H, ngz V, N2 sin & coS ¢

H, Vi’ Vi M?sin (c — 9) cos (0—9)+cos(c—8)
P _Vi__sino _ pr_eafg 1 qypre (Ve )] 1.1
-9_1_V28i1'1(0'——3) ’ PI—PI [1 2 (y_ 1)M &‘/2 ( N )
2 2 J—
P2 _wM?sins &91__1>____ Nz[sm 6:05 (6=9) _ .os c]
pa P2 sin? (6 — 9)

In the works [ 1] and [3] it is shown that in a real shock wave (with
increasing entropy)

P2 2] Va
pl>1, pl>1, V1<1

The problem discussed in the present work consists in elucidating the
nature of changes in flow parameters behind the shock wave as they depend
upon the parameters M and N ahead of the shock and the angle of inclina-
tion & of the velocity and field vectors to the wave. In view of the com-
plexity of the relations (1.1), in the analysis only special character-
istic points of the shock polar are given, and certain degenerate regimes
A complete analysis by calculation of the behavior of the functions near
these characteristic points permits the general nature of .the shock polar
to be shown.

2. Weak shock waves. In the work [ 2] weak shock waves were studied,
for which the variation of all flow and field parameters is proportional
to the angle of deflection of the velocity vector. Such shock waves we
will call weak shock waves of the first family. The angle of inclination
of a shock wave of the first family of zero intensity is determined by
the expression [2]

—NT(1 = M?)
tgco—+]/ (Mz_i) M) (2.1)
As 1s easily seen from (2.1), these waves exist for N < 1 in the range
M, <M< < Nand 1g o0, andforN>11ntherangeM\<M<1and

N Mg oo,whereM N(1+N2) 1/2

The angle by which a shock wave of non-zero intensity deviates from
o, 1s proportional to the deflection angle & of the stream:

(B4 %) (1 — M2) N2 4 (x + 1) (N2 —
4 [M?— N2 (1— M?)] (1 — M?)

M) o (2.2)

d=0g—o0y=

The pressure behind the shock wave 1s equal to

M2 _— N2
M48in og cOSGg

p2=p1+oVo? (2.3)
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For M < 1 the deflection of the stream through a positive angle & at
a weak shock wave of the first family can take place only for o, > 90°
(in this case cos 0y < 0 and p, > pl). According to (2.2), under the same
conditions 8 > 0, consequently, as 9 increases, the shock wave approaches
the axis. As N> 0 with M > 1 the wave under consideration approaches the
weak wave of ordinary gas dynamics. In magneto-gasdynamics a new type of
weak shock wave appears, which we will call a wave of the second family,
and which has no analog in ordinary gasdynamics. These waves occur for
ML =N 4 A, 0=90° 47 andd = 27 + ¢, where A and ¢ are small, and
0 g7 £ 90°, In this case, neglecting squares of small quantities in

(1.1) we have

Vz A L2 2( 5 A \

— T = —_— —_— = —— — t 3

7 1-+etgne 3 o «M? | cos T3 el 2.4)
o A { — M2 . A

P—:Zi—}*m, E:—I:-M—2+XSIH21]-W

Hence, it 1is clear that we must have A > 0; that is, the second type
of shock wave exists for M > N.

For M = N the stream is turned through any angle up to 180° without
changes in the flow and field parameters*. This type of wave has a simple
physical interpretation. Consider a wave of this type (Fig. 2). From the
geometry of the flow it is clear that the angles y, and p, between the
velocity and field vectors and the normal to the wave are equal to each

other an! to r; that is, p, = p, = p=7. Since p, = p,, p, = p,, V, =V,
and H = H,, 1t 1s clear that the mass, normal momentum and energy of the
stream are conserved. The change in tangential momentum is determined
such that, in contrast to the ordinary shock wave, in the magneto-hydro-
dynamic wave a finite force acts on the fluid. In fact, since the current
across any surface is equal to the integral of the field around the con-
tour of that surface

* These waves are called rotatory shocks [ 1],
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hal = c<§> Hdl

and since the field suffers a Jdiscontinuity at the shock, a finite current
flows in the shock. Since this current flows in a magnetic field, a finite
force acts upon it, having in the general case normal as well as tengential
components. A shock wave in an infinitely conducting gas is basically dis-
tinguished from an ordinary shock wave by the appearance of this force,
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Fig. 4.

since the existence of a magnetic field and infinite conductivity affect
neither the conservation of mass nor the conservation of energy*.

In the case considered the current per unit length of shock is equal
to 1/2 771 ¢H sin p. This current flows in the magnetic field H cos p
normal to the shock, so that the force acting along the shock is equal to
1/2 o=t ¢H? sin u cos pu. This force must be equal to the change in tan-
gential impulse

20V2sinpcosp =y ntH 2sinpcos
This equality clearly applies to M = N, which was assumed.
We note that the last type of wave occurs also in an imcompressible
fluid for 4n p1V12 = le. In the hodograph plane of the velocity (Figs.

3 and 4) the polar for the shock wave of the second family with M = N is
clearly represented by a circle.

The flux of the Poynting vector s = (477! ¢ B x H through a control
surface enclosing both sides of the shock surface is equal to zero,
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3. Normal shock wave(o = 1/27). If V, and H, are perpendicular
to the shock front, then one of the possible flows 1s a flow with a con-
tinuous field. In this case there is no current in the shock and the
shock wave is identical with the ordinary one. However, in magneto-gas-
dynamics a flow is possible with deflection of the velocity and field
vectors. In this case the force acting on the current arising at the wave
turns the stream.

Putting ¢ = 1/27 in (1.1) we have

Va _ N2 1 Pz __q 2 N2y 1 2to? O
v = ieeT pl_lTx(M N2y —1/,xN%*tg
P2 _ M? (V2 —M?) [2 4 (x — 1) M? — (» + 1) V?]

= — tg2‘3=

o N Nt

It is easy to verify that such shock waves of compression (p,/p, > 1)
exist only for N> 1 and Ng M g My, where

2__x+1( 2 2 )
M, —x—-iN ®+1

Thus in this range three regimes of flow are possible behind a normal
shock (with® > 0, 9= 0 and 9 < 0). The point M = My is also special
for the behavior of the shock wave near ¢ = 1/27 and & = 0, In fact,
with 0 = 1/27 - & and small we have

24 (x—1) M2 — (x 1) N
8= 2(MZ—1) ¥

For M > 1 and M < M, the numerator on the right is negative. Hence,
as 9 increases ¢ also increases (that is, o becomes > 1/2x ). For M > My,
on the other hand, as & increases the angle of inclination o decreases,
as it does also along the shock polar of ordinary gasdynamics near the
normal shock.

4. Shock waves with M = N. It was noted in Section 2 that for
N = M there exist weak shock waves of a second family at which the stream
and the field change their direction by any angle without a change in the
flow parameters. On the other hand, in Section 3 we saw that for ¥ > 1
and any N the usual normal shock wave exists. This wave clearly does not
belong to the class of weak shock waves of the second family, and con-
sequently belongs to another branch of the shock polar. It is found that
for M = N there exists a class of shock waves whose inclination o makes
a right angle with the direction & of the stream behind the shock. Putting
= 1/2m+ % in (1.1) we obtain

;}:_Vl‘f;nc[i__(x_1)M2 \%_-1)] %:(%)Sillc
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(ﬁ) _[24xM(1 +sinfo)]+ VR (%.1)
Vilis 2{(x + 1) M2sinc :

R =12 +xM2(1 +sin?0)}? — 4 (x + 1) M2sin® o [2 |- (x — 1) M ?]

Here the indices 1 and 2 correspond to the upper and lower signs.
With 0 = 1/27+ 8, where 8§ is a small quantity and M < 1, we have
Va) _[2+ (=1 M2 2 Yoy ¥ ,,
(W)l_[. (x + 1) M? +0(6)]>1’ (V1)2'—~1 2(1~—-M2)<1
and for M> 1
Vi\ _ 5 Vi _ 24+ (x—)MP[, &
(W)x =1 +2(M2~—-1) >1, (VJ; T AN [1 2(M2-~1)} <1
Thus, only the second root corresponds to a real shock wave. For § » 1
and M > 1 we have the usual normal shock wave, and for M < 1 a weak wave.

Consequently for M < 1 and M = N both branches of the shock polar start
in one point, corresponding to a weak shock wave with & = 0. For o=n-5

Va\ 2 +xME(1 3] 42 +x M + 8] o 2 4 (x—1) M?
(Vx—/l,2 - ' (% + 1) M?%3 ) @ + =M%

Here again, only the second root corresponds to a real wave:

Va\ 24 (x—1) M3
(72), = Han o <t

We note that the magnitude V, of the velocity behind the wave tends to
zero as ¢ » w, and 9 tends to 1/2n.

The form of the branch for strong shock waves when M = N is shown in
Figs. 3 and 4. We note that with increasing angle of inclination of the
wave (going from o = 1/27 to ¢ = 7) the wave becomes continually weaker;
that 1s, pz/p1 falls from the value p,/p, = (x + D2« M2+ (k- D]
corresponding to the ordinary normal shock to the value pZ/p = 1/2(2 4

) . . 1 :
kM? ). However, the entropy loss increases (that is, the ratio pz,/p2 /
p,/p " falls).

5. Shock waves with o » 7. It is evident that as ¢ » 7 two
possibilities arise*: ¥ » 0 and 9+ n, let o =7 -~ 8 and 9 0. Then

Ve N S P W
W= "msre bt 5=l 2N2[<ﬁ+s)z 1}
i_iz_‘%g% azé(—B;&VBL—éE)A‘W} (5.1)

* The case M = N is excluded, when ~» 1/27 as o > 7.
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where

A= M2 — N3 (1 M%), B =", (A2N?— [4 4 (z + 1) N2} (N? — M?))
C= (14 1xN?) (M -— N?

For o =7 - & and &= - € we have

Vz - N2l 0 pg__ " 82——‘
e B=l— N g 1| (5.2)
s Vi 3 1 e T
p—::ﬁe”:% 8= 5 (BV B*—4AC) A8

It is easy to see that among the shock waves determined by the rela-
tions (5.1) only those will be real for which 9 and 8 are positive. There-
fore, these waves can exist for Ma £ M < N. Here only the root corres-
ponding to the upper sign is meaningful. Analogously, waves turning the
stream through almost 180°, determined by the relations (5.2), can exist
only for N M < M, where M; is the Mach number for which B? — 4AB
vanishes. For M > M, the square root in (5.1) and (5.2) becomes imagin-
ary. Values of M for different N are given in Fig. 5, where the values
Ma, M= N and Mb are also given. We note that MC is less than M, almost
everywhere. Thus, for N M g Mc these exist two waves turning the stream
through an angle near to .
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Fig. 5.

6. General nature of the shock polar. The analysis given above
permits us to elucidate the general nature of the behavior of the shock
polar for different values of the parameters M and N of the stream and
the field. It is convenient to consider separately the cases N < 1 and

N> 1.

The case N < 1 (Fig. 3). Here there is no shock wave for ¥ < M . For
M, < M < N there is one branch of the shock polar, to which correspond
shock waves with an angle of inclination o > o, > 1/27. The pressure be-
hind the wave and the loss due to entropy rise increase in moving along
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the polar from ¢ = o to o = 7. For ¢ = o, the weak shock of the first
family exists. For M= M_ all the polars tend to a point. As M increases,
the point corresponding to ¢ = # moves toward the origin of coordinates,
which 1t reaches when M = N. For this value of M the weak shock waves of
the second family appear (Section 2), whose polar is represented by a
circle. Both branches of the polar start at the point ¥V, = V, %= 0 and
o=o0)= 1/27. With further increase in Mach number, the points of both
branches corresponding to ¢ = # and % = # begin to approach each other,
coinciding at M = M_. As was observed in Section 2, for 1> M > N there
is no weak shock with %~ 0. The juncture point of the two branches of
the shock polar detaches itself from the axis and with increase in Mach
number tends toward continually larger angles . For M = M_all the
polars tend to a point. For ¥, < M < 1 no shock wave exists. For ¥ > 1
there exists one branch of sliock waves qualitatively similar to the shock
polar of ordinary gasdynamics.

The case N> 1 (Fig. 4). Here, just as in the preceding case, there is
no shock wave for M < M . For M_ < M < 1 there is a branch of the polar
corresponding to waves with an angle of inclination 7 > ¢ > o, > 1/2n .
For M = 1 the angle of inclination of the weak wave of the first family
o, becomes equal to 1/25. Here, properly speaking, the weak shock wave is
at the same time also a normal shock. For M > 1 the shock polars begin
with a normal shock (%= 0; that is, with the nomal shock of ordinary
gas dynamics) and end with 0 = 7 (9= 0). Here the pressure behind the
shock increases with displacement along the polar from o = 1/2# toward
o = n. In Section 4 we saw that for M = N, on the other hand, the pressure
behind the wave decreases with movement along the polar from e = 1/2r to
o =, It can be shown that for a certain number M = Md’ where 1 < Md < N,
the pressure behind the shock along the entire polar is constant and equal
to the pressure in the usual normal shock. For smaller Mach numbers the
pressure behind the shock increases along the polar (as ¢ increases from
1/27 to n), and for larger ones it decreases. For M = N the weak shock
waves of the second family appear, whose polar is represented Ly a circle.
Beginning with M= N and up to M= M, (see Section 5), the branches of
the shock polar nowhere intersect. For M = M_ their points corresponding
to o =n,d =m join together. For still greater Mach numbers the junc-
ture point of the shock polars moves toward smaller angles 9 (the maximum
angle through which the shock wave turns the stream decreases). The polar
gradually deforms, tending for M > M, to one similar to the polar of
ordinary gasdynamics.

We note that for N M M, the pressure and entropy loss behind the
shock increase along the branch beginning with the weak shock wave
(o = 00). Along the second branch, moving from the normal shock toward
the wave with o = n, the pressure falls but the entropy loss increases.
Therefore after the joining of the two branches into one polar (for
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M> M) the pressure behind the shock continually increases (in moving
from ¢ = 0, to the maximum angle of deflection of the velocity vector and
then to the normal shock), but the entropy loss has a maximum at the
point of juncture of the polar.

Similar to the velocity peolars, the magnetic field polars can be con-
structed. The characteristic property of these polars is that the angle
formed by the x-axis (along which the vector H, is directed) and the line
passing through the extremities of the vectors H, and H, is equal to the
angle of inclination o of the wave.

Thus an analysis of the behavior of the shock polar of magneto-hydro-
dynamic shock waves has shown a number of interesting properties, which
have no analog in ordinary gas dynamics. The existence of these properties
opens new possibilities for practical applications.
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